Stochastic Collocation for Optimal Control Problems with Stochastic PDE Constraints
نویسندگان
چکیده
We discuss the use of stochastic collocation for the solution of optimal control problems which are constrained by stochastic partial differential equations (SPDE). Thereby the constraining SPDE depends on data which is not deterministic but random. Assuming a deterministic control, randomness within the states of the input data will propagate to the states of the system. For the solution of SPDEs there has recently been an increasing effort in the development of efficient numerical schemes based upon the mathematical concept of generalized polynomial chaos. Modal-based stochastic Galerkin and nodal-based stochastic collocation versions of this methodology exist, both of which rely on a certain level of smoothness of the solution in the random space to yield accelerated convergence rates. In this paper we apply the stochastic collocation method to develop a gradient descent as well as a sequential quadratic program (SQP) for the minimization of objective functions constrained by an SPDE. The stochastic function involves several higher-order moments of the random states of the system as well as classical regularization of the control. In particular we discuss several objective functions of tracking type. Numerical examples are presented to demonstrate the performance of our new stochastic collocation minimization approach.
منابع مشابه
Optimal control with stochastic PDE constraints and uncertain controls
The optimal control of problems that are constrained by partial differential equations with uncertainties and with uncertain controls is addressed. The Lagrangian that defines the problem is postulated in terms of stochastic functions, with the control function possibly decomposed into an unknown deterministic component and a known zero-mean stochastic component. The extra freedom provided by t...
متن کاملStochastic Spline-collocation Method for Constrained Optimal Control Problem Governed by Random Elliptic Pde
In this paper, we investigate a stochastic spline-collocation approximation scheme for an optimal control problem governed by an elliptic PDE with random field coefficients. We obtain the necessary and sufficient optimality conditions for the optimal control problem and establish a scheme to approximate the optimality system through the discretization with respect to the spatial space by finite...
متن کاملWeighted reduced basis method for stochastic optimal control problems with elliptic PDE constraint
In this paper we develop and analyze an efficient computational method for solving stochastic optimal control problems constrained by elliptic partial differential equation (PDE) with random input data. We first prove both existence and uniqueness of the optimal solution. Regularity of the optimal solution in the stochastic space is studied in view of the analysis of stochastic approximation er...
متن کاملA Trust-Region Algorithm with Adaptive Stochastic Collocation for PDE Optimization under Uncertainty
The numerical solution of optimization problems governed by partial differential equations (PDEs) with random coefficients is computationally challenging because of the large number of deterministic PDE solves required at each optimization iteration. This paper introduces an efficient algorithm for solving such problems based on a combination of adaptive sparse-grid collocation for the discreti...
متن کاملModel Order Reduction Techniques for Uncertainty Quantification Problems
The last few years have witnessed a tremendous development of the computational field of uncertainty quantification (UQ), which includes statistical, sensitivity and reliability analyses, stochastic or robust optimal control/design/optimization, parameter estimation, data assimilation, to name just a few. In all these problems, the solution of stochastic partial differential equations (PDEs) is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Control and Optimization
دوره 50 شماره
صفحات -
تاریخ انتشار 2012